D. Zivoi

ETH Zürich

danijel.zivoi@math.ethz.ch

March 6, 2015

D. Zivoi (ETHZ)

3 March 6, 2015 1 / 23

-

<ロト </p>

Start with (Ω, \mathcal{F}, P) , $S = (S_k)_{k=0,...,T}$, $\mathbb{F} = (\mathcal{F}_k)_{k=0,...,T}$ and let H be a random payment at time T.

Start with (Ω, \mathcal{F}, P) , $S = (S_k)_{k=0,...,T}$, $\mathbb{F} = (\mathcal{F}_k)_{k=0,...,T}$ and let H be a random payment at time T.

Typically H is not attainable, so we need to specify our attitude towards risk.

Start with (Ω, \mathcal{F}, P) , $S = (S_k)_{k=0,...,T}$, $\mathbb{F} = (\mathcal{F}_k)_{k=0,...,T}$ and let H be a random payment at time T.

Typically H is not attainable, so we need to specify our attitude towards risk.

Introduce an a priori valuation rule Π^{γ} defined by

$$\Pi^{\gamma}(H):=E[H]-rac{\gamma}{2}Var(H) \qquad ext{for some } \gamma>0,$$

Start with (Ω, \mathcal{F}, P) , $S = (S_k)_{k=0,...,T}$, $\mathbb{F} = (\mathcal{F}_k)_{k=0,...,T}$ and let H be a random payment at time T.

Typically H is not attainable, so we need to specify our attitude towards risk.

Introduce an a priori valuation rule Π^{γ} defined by

$$\Pi^{\gamma}(H) := E[H] - rac{\gamma}{2} Var(H)$$
 for some $\gamma > 0$,

actuarial variance principle or mean-variance criterion.

Start with (Ω, \mathcal{F}, P) , $S = (S_k)_{k=0,...,T}$, $\mathbb{F} = (\mathcal{F}_k)_{k=0,...,T}$ and let H be a random payment at time T.

Typically H is not attainable, so we need to specify our attitude towards risk.

Introduce an a priori valuation rule Π^{γ} defined by

$$\Pi^{\gamma}(H) := E[H] - rac{\gamma}{2} Var(H)$$
 for some $\gamma > 0$,

actuarial variance principle or mean-variance criterion.

Question: How to use Π^{γ} in order to hedge and value *H*?

Static Mean-Variance indifference valuation: $\Pi^{\gamma}(H) := E[H] - \frac{\gamma}{2} Var(H)$

(日) (同) (三) (三)

Static Mean-Variance indifference valuation: $\Pi^{\gamma}(H) := E[H] - \frac{\gamma}{2} Var(H)$

Start with initial capital $x_0 \in \mathbb{R}$ and call $\pi^{\gamma}(H, x_0) \in \mathbb{R}$ a Π^{γ} -indifference value if

$$\sup_{\vartheta\in\Theta} \Pi^{\gamma}\left(x_{0}+\sum_{k=1}^{T}\vartheta_{k}\Delta S_{k}\right)\stackrel{!}{=} \sup_{\vartheta\in\Theta} \Pi^{\gamma}\left(x_{0}+\pi^{\gamma}(H,x_{0})+\sum_{k=1}^{T}\vartheta_{k}\Delta S_{k}-H\right),$$

where $\Theta := \{ \text{all predictable } \vartheta \text{ such that } \vartheta_k \Delta S_k \in L^2 \}.$

Static Mean-Variance indifference valuation: $\Pi^{\gamma}(H) := E[H] - \frac{\gamma}{2} Var(H)$

Start with initial capital $x_0 \in \mathbb{R}$ and call $\pi^{\gamma}(H, x_0) \in \mathbb{R}$ a Π^{γ} -indifference value if

$$\sup_{\vartheta\in\Theta} \Pi^{\gamma} \left(x_0 + \sum_{k=1}^{T} \vartheta_k \Delta S_k \right) \stackrel{!}{=} \sup_{\vartheta\in\Theta} \Pi^{\gamma} \left(x_0 + \pi^{\gamma}(H, x_0) + \sum_{k=1}^{T} \vartheta_k \Delta S_k - H \right),$$

where $\Theta := \{ \text{all predictable } \vartheta \text{ such that } \vartheta_k \Delta S_k \in L^2 \}.$

Denote by $\vartheta^0, \vartheta^H \in \Theta$ the solutions, then $\vartheta^H - \vartheta^0$ is called Π^{γ} -indifference hedging strategy

Theorem (Mercurio (2000), Schweizer (2001)) If $\vartheta^0 \in \Theta$ (NA condition) and

$$H = c^{H} + \sum_{k=1}^{T} \xi_{k}^{H} \Delta S_{k} + N^{H} \in G_{T}(\Theta) \oplus (G_{T}(\Theta))^{\perp}$$

where $c^{H} \in \mathbb{R}$, $\xi^{H} \in \Theta$ and $N^{H} \in L^{2}$ with mean zero and orthogonal wrt to all stochastic integrals of S, then

$$\pi^{\gamma}(H, x_0) = \pi^{\gamma}(H) = c^H + rac{\gamma}{2} Var(N^H) = \widetilde{E}[H] + rac{\gamma}{2} Var(N^H).$$

Moreover, ξ^{H} is the Π^{γ} -indifference hedging strategy.

A posteriori valuation $\pi^{\gamma} \rightarrow$ *Financial variance principle*.

Message:

1

$$\Pi^{\gamma}(H) := E[H] - \frac{\gamma}{2} Var(H) \mapsto \pi^{\gamma}(H) = \widetilde{E}[H] + \frac{\gamma}{2} Var(N^{H}).$$

- **2** Davis price (here $\tilde{E}[H]$), bid-ask spread, extension to continuous-time.
- Π^γ-indifference hedging strategy is the *mean-variance hedging* strategy ξ^H.
- An explicit scheme for valuation and hedging a general H.
 - Determine $H = c^H + \sum_{k=1}^T \xi_k^H \Delta S_k + N^H$.
 - (OTC value) π^{γ} and hedging strategy ξ^{H} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $T \in \mathbb{N}$ and let $\mathbb{F} = (\mathcal{F}_k)_{k=0,...,T}$, $S = (S_k)_{k=0,...,T}$ and $H \in L^2(\mathcal{F}_T)$

Let $T \in \mathbb{N}$ and let $\mathbb{F} = (\mathcal{F}_k)_{k=0,...,T}$, $S = (S_k)_{k=0,...,T}$ and $H \in L^2(\mathcal{F}_T)$ Extend Π^{γ} to $(\Pi_k^{\gamma})_{k=0,...,T}$ where

$$\Pi_k^{\gamma}(H) := E[H|\mathcal{F}_k] - \frac{\gamma}{2} Var(H|\mathcal{F}_k).$$

< 🗇 🕨 < 🖃 🕨

Let $T \in \mathbb{N}$ and let $\mathbb{F} = (\mathcal{F}_k)_{k=0,...,T}$, $S = (S_k)_{k=0,...,T}$ and $H \in L^2(\mathcal{F}_T)$ Extend Π^{γ} to $(\Pi_k^{\gamma})_{k=0,...,T}$ where

$$\Pi_k^{\gamma}(H) := E[H|\mathcal{F}_k] - \frac{\gamma}{2} Var(H|\mathcal{F}_k).$$

Think of $\prod_{k=1}^{\gamma} (X)$ as the utility of X at time k.

Let $T \in \mathbb{N}$ and let $\mathbb{F} = (\mathcal{F}_k)_{k=0,...,T}$, $S = (S_k)_{k=0,...,T}$ and $H \in L^2(\mathcal{F}_T)$ Extend Π^{γ} to $(\Pi_k^{\gamma})_{k=0,...,T}$ where

$$\Pi_k^{\gamma}(H) := E[H|\mathcal{F}_k] - \frac{\gamma}{2} Var(H|\mathcal{F}_k).$$

Think of $\prod_{k=1}^{\gamma} (X)$ as the utility of X at time k.

How do we define $\pi_k^{\gamma}(H)$?

Let $T \in \mathbb{N}$ and let $\mathbb{F} = (\mathcal{F}_k)_{k=0,...,T}$, $S = (S_k)_{k=0,...,T}$ and $H \in L^2(\mathcal{F}_T)$ Extend Π^{γ} to $(\Pi_k^{\gamma})_{k=0,...,T}$ where

$$\Pi_k^{\gamma}(H) := E[H|\mathcal{F}_k] - \frac{\gamma}{2} Var(H|\mathcal{F}_k).$$

Think of $\prod_{k=1}^{\gamma} (X)$ as the utility of X at time k.

How do we define $\pi_k^{\gamma}(H)$?

What we expect is

$${}^{``}\pi_k^\gamma(H) = \widetilde{E}[H|\mathcal{F}_k] + rac{\gamma}{2} Var(N^H|\mathcal{F}_k)".$$

Define $\pi_k^{\gamma}(H)$ by equating the two alternatives.

► < ∃ ►</p>

Define $\pi_k^{\gamma}(H)$ by equating the two alternatives.

First alternative: Optimal investment only in S with initial capital x_k

$$x_k + \sum_{j=k+1}^T \vartheta_j^0 \Delta S_j$$

Define $\pi_k^{\gamma}(H)$ by equating the two alternatives.

First alternative: Optimal investment only in S with initial capital x_k

$$x_k + \sum_{j=k+1}^T \vartheta_j^0 \Delta S_j$$

Second alternative: Sell H at time k for $\pi_k^{\gamma}(H)$ and trade optimally with initial capital x_k

$$x_k + \pi_k^{\gamma}(H) + \sum_{j=k+1}^{I} \vartheta_j^H \Delta S_j - H$$

Define $\pi_k^{\gamma}(H)$ by equating the two alternatives:

First alternative: Optimal investment only in S with initial capital x_k

$$\Pi_{k}^{\gamma}\left(x_{k}+\sum_{j=k+1}^{T}\vartheta_{j}^{0}\Delta S_{j}\right)$$

Second alternative: Sell H at time k for $\pi_k^{\gamma}(H)$ and trade optimally with initial capital x_k

$$\Pi_{k}^{\gamma}\left(x_{k}+\pi_{k}^{\gamma}(H)+\sum_{j=k+1}^{T}\vartheta_{j}^{H}\Delta S_{j}-H\right)$$

D. Zivoi (ETHZ)

First alternative: Optimal investment only in S

D. Zivoi (ETHZ)

Imperial College 2015

March 6, 2015 11 / 23

-

3

First alternative: Optimal investment only in S

1) Suppose that $\vartheta_{k+2}^0, \ldots, \vartheta_{\mathcal{T}}^0$ have already been prescribed. At time k, we choose ϑ_{k+1}^0 such that

$$\mathbf{I}_{k}^{\gamma} \left(x_{k} + \sum_{j=k+1}^{T} \vartheta_{j}^{0} \Delta S_{j} \right)$$

$$= \operatorname{ess\,sup} \prod_{k}^{\gamma} \left(x_{k} + \vartheta_{k+1} \Delta S_{k+1} + \sum_{j=k+2}^{T} \vartheta_{j}^{0} \Delta S_{j} \right),$$

where the essential supremum is taken over all \mathcal{F}_k -measurable ϑ_{k+1} such that $\vartheta_{k+1} \Delta S_{k+1} \in L^2(P)$.

Г

The solution to the first alternative (if it exists) is

$$\vartheta_{k+1}^{0} = \frac{1}{\gamma} \frac{E[\Delta S_{k+1} | \mathcal{F}_{k}]}{Var(\Delta S_{k+1} | \mathcal{F}_{k})} - \frac{Cov\left(\Delta S_{k+1}, \sum_{j=k+2}^{T} \vartheta_{j}^{0} \Delta S_{j} \middle| \mathcal{F}_{k}\right)}{Var(\Delta S_{k+1} | \mathcal{F}_{k})}.$$

Second alternative: Sell H at time k for $\pi_k^{\gamma}(H)$ and trade optimally.

3

-

(二)、

Second alternative: Sell H at time k for $\pi_k^{\gamma}(H)$ and trade optimally.

2) Suppose that $\vartheta_{k+2}^H, \ldots, \vartheta_T^H$ have already been prescribed. At time k, we choose ϑ_{k+1}^H such that

$$\Pi_{k}^{\gamma}\left(x_{k}+\pi_{k}^{\gamma}(H)+\sum_{j=k+1}^{T}\vartheta_{j}^{H}\Delta S_{j}-H\right)$$

= ess sup $\Pi_{k}^{\gamma}\left(x_{k}+\pi_{k}^{\gamma}(H)+\vartheta_{k+1}\Delta S_{k+1}+\sum_{j=k+2}^{T}\vartheta_{j}^{H}\Delta S_{j}-H\right),$

where the essential supremum is taken over all \mathcal{F}_k -measurable ϑ_{k+1} such that $\vartheta_{k+1}\Delta S_{k+1} \in L^2(P)$.

The solution to the second alternative (if it exists) is

$$\vartheta_{k+1}^{H} = \frac{1}{\gamma} \frac{E[\Delta S_{k+1} | \mathcal{F}_{k}]}{Var(\Delta S_{k+1} | \mathcal{F}_{k})} + \frac{Cov\left(\Delta S_{k+1}, H - \sum_{j=k+2}^{T} \vartheta_{j}^{H} \Delta S_{j} \middle| \mathcal{F}_{k}\right)}{Var(\Delta S_{k+1} | \mathcal{F}_{k})}.$$

We define the *dynamic mean-variance indifference value* $\pi_k^{\gamma}(H)$ at time k by

$$\Pi_{k}^{\gamma}\left(x_{k}+\sum_{j=k+1}^{T}\vartheta_{j}^{0}\Delta S_{j}\right)\stackrel{!}{=}\Pi_{k}^{\gamma}\left(x_{k}+\pi_{k}^{\gamma}(H)+\sum_{j=k+1}^{T}\vartheta_{j}^{H}\Delta S_{j}-H\right)$$

with

$$\vartheta_{k+1}^{H} = \frac{1}{\gamma} \frac{E[\Delta S_{k+1} | \mathcal{F}_{k}]}{Var(\Delta S_{k+1} | \mathcal{F}_{k})} + \frac{Cov\left(\Delta S_{k+1}, H - \sum_{j=k+2}^{T} \vartheta_{j}^{H} \Delta S_{j} \middle| \mathcal{F}_{k}\right)}{Var(\Delta S_{k+1} | \mathcal{F}_{k})}.$$

We define the dynamic mean-variance indifference value $\pi_k^{\gamma}(H)$ at time k by

$$\Pi_{k}^{\gamma}\left(x_{k}+\sum_{j=k+1}^{T}\vartheta_{j}^{0}\Delta S_{j}\right)\stackrel{!}{=}\Pi_{k}^{\gamma}\left(x_{k}+\pi_{k}^{\gamma}(H)+\sum_{j=k+1}^{T}\vartheta_{j}^{H}\Delta S_{j}-H\right)$$

with

$$\vartheta_{k+1}^{H} = \frac{1}{\gamma} \frac{E[\Delta S_{k+1} | \mathcal{F}_{k}]}{Var(\Delta S_{k+1} | \mathcal{F}_{k})} + \frac{Cov\left(\Delta S_{k+1}, H - \sum_{j=k+2}^{T} \vartheta_{j}^{H} \Delta S_{j} \middle| \mathcal{F}_{k}\right)}{Var(\Delta S_{k+1} | \mathcal{F}_{k})}$$

 \rightarrow Write $\xi^{H} := \vartheta^{H} - \vartheta^{0}$ for the Π^{γ} -indifference hedging strategy.

D. Zivoi (ETHZ)

We define the dynamic mean-variance indifference value $\pi_k^{\gamma}(H)$ at time k by

$$\Pi_{k}^{\gamma}\left(x_{k}+\sum_{j=k+1}^{T}\vartheta_{j}^{0}\Delta S_{j}\right)\stackrel{!}{=}\Pi_{k}^{\gamma}\left(x_{k}+\pi_{k}^{\gamma}(H)+\sum_{j=k+1}^{T}\vartheta_{j}^{H}\Delta S_{j}-H\right)$$

with

$$\vartheta_{k+1}^{H} = \frac{1}{\gamma} \frac{E[\Delta S_{k+1} | \mathcal{F}_{k}]}{Var(\Delta S_{k+1} | \mathcal{F}_{k})} + \frac{Cov\left(\Delta S_{k+1}, H - \sum_{j=k+2}^{T} \vartheta_{j}^{H} \Delta S_{j} \middle| \mathcal{F}_{k}\right)}{Var(\Delta S_{k+1} | \mathcal{F}_{k})}$$

→ Write $\xi^H := \vartheta^H - \vartheta^0$ for the Π^{γ} -indifference hedging strategy. → How can ϑ^0 and ξ^H be described?

$$\Theta := \left\{ \vartheta = (\vartheta_k)_{k=1,\ldots,T} \text{ pred. s. t. } \vartheta_k \Delta S_k \in L^2(P) \, \forall k = 0,\ldots,T \right\}.$$

▲口> ▲圖> ▲国> ▲国>

$$\Theta := \left\{ \vartheta = (\vartheta_k)_{k=1,\ldots,T} \text{ pred. s. t. } \vartheta_k \Delta S_k \in L^2(P) \, \forall k = 0,\ldots,T \right\}.$$

Lemma (Characterization of ξ^H and ϑ^0)

Assume that $\lambda_k := \frac{E[\Delta S_{k+1}|\mathcal{F}_k]}{Var(\Delta S_{k+1}|\mathcal{F}_k)}$ is well-defined and that $\vartheta^H, \vartheta^0 \in \Theta$.

$$\Theta := \left\{ \vartheta = (\vartheta_k)_{k=1,\ldots,T} \text{ pred. s. t. } \vartheta_k \Delta S_k \in L^2(P) \, \forall k = 0,\ldots,T \right\}.$$

Lemma (Characterization of ξ^H and ϑ^0)

Assume that $\lambda_k := \frac{E[\Delta S_{k+1}|\mathcal{F}_k]}{Var(\Delta S_{k+1}|\mathcal{F}_k)}$ is well-defined and that $\vartheta^H, \vartheta^0 \in \Theta$.

Then ξ^H is the integrand in the FS decomposition of H with respect to S:

$$H = \widehat{H}_0 + \sum_{k=1}^{I} \xi_k^H \Delta S_k + L_T^H,$$

 \rightarrow local risk-minimization

$$\Theta := \left\{ \vartheta = (\vartheta_k)_{k=1,\ldots,T} \text{ pred. s. t. } \vartheta_k \Delta S_k \in L^2(P) \, \forall k = 0,\ldots,T \right\}.$$

Lemma (Characterization of ξ^H and ϑ^0)

Assume that $\lambda_k := \frac{E[\Delta S_{k+1}|\mathcal{F}_k]}{Var(\Delta S_{k+1}|\mathcal{F}_k)}$ is well-defined and that $\vartheta^H, \vartheta^0 \in \Theta$.

Then ξ^H is the integrand in the FS decomposition of H with respect to S:

$$H = \widehat{H}_0 + \sum_{k=1}^{I} \xi_k^H \Delta S_k + L_T^H,$$

 \rightarrow local risk-minimization

• Then ϑ^0 is the integrand in the FS decomposition of $1/\gamma(\lambda \bullet M)_T$, i.e.,

$$\frac{1}{\gamma}\sum_{k=1}^{T}\lambda_{k}\Delta M_{k} = \widehat{X}_{0} + \sum_{k=1}^{T}\vartheta_{k}^{0}\Delta S_{k} + L_{T},$$

where the process M denotes the martingale part of S.

D. Zivoi (ETHZ)

Minimal martingale measure

The *intrinsic value process* of *H*, denoted by $\widehat{V}(H) = (\widehat{V}_k(H))_{k=0,...,T}$, is defined by

$$\widehat{V}_k(H) := \widehat{H}_0 + \sum_{\ell=1}^k \xi_\ell^H \Delta S_\ell + L_k^H.$$

Define

$$\widehat{\boldsymbol{Z}}_k^{\mathcal{T}} := \prod_{j=k+1}^{\mathcal{T}} (1 + \lambda_j \Delta M_j) \quad \text{and} \quad \widehat{\boldsymbol{E}}[\boldsymbol{H}|\mathcal{F}_k] := \boldsymbol{E}[\widehat{\boldsymbol{Z}}_k^{\mathcal{T}} \boldsymbol{H}|\mathcal{F}_k].$$

Minimal martingale measure

The *intrinsic value process* of *H*, denoted by $\widehat{V}(H) = (\widehat{V}_k(H))_{k=0,...,T}$, is defined by

$$\widehat{V}_k(H) := \widehat{H}_0 + \sum_{\ell=1}^{k} \xi_\ell^H \Delta S_\ell + L_k^H.$$

Define

$$\widehat{Z}_k^T := \prod_{j=k+1}^T (1 + \lambda_j \Delta M_j) \text{ and } \widehat{E}[H|\mathcal{F}_k] := E[\widehat{Z}_k^T H|\mathcal{F}_k].$$

Then we have

$$\widehat{E}[H|\mathcal{F}_k] = \widehat{V}_k(H).$$

Main result

Theorem (Dynamic Mean-Variance Indifference Valuation) Let $1/\gamma(\lambda \cdot M)_T$ and H admit a Föllmer-Schweizer decomposition. Then the dynamic mean-variance indifference value process $\pi^{\gamma}(H)$ is given by the formula

$$\pi_{k}^{\gamma}(H) = \widehat{E}[H|\mathcal{F}_{k}] + \gamma Cov(\mathcal{L}_{T}, \mathcal{L}_{T}^{H}|\mathcal{F}_{k}) + \frac{\gamma}{2} Var(\mathcal{L}_{T}^{H}|\mathcal{F}_{k}),$$

for k = 0, ..., T.

• • = • •

Main result

Theorem (Dynamic Mean-Variance Indifference Valuation) Let $1/\gamma(\lambda \cdot M)_T$ and H admit a Föllmer-Schweizer decomposition. Then the dynamic mean-variance indifference value process $\pi^{\gamma}(H)$ is given by the formula

$$\pi_{k}^{\gamma}(H) = \widehat{E}[H|\mathcal{F}_{k}] + \gamma Cov(\mathcal{L}_{T}, \mathcal{L}_{T}^{H}|\mathcal{F}_{k}) + \frac{\gamma}{2} Var(\mathcal{L}_{T}^{H}|\mathcal{F}_{k}),$$

for k = 0, ..., T.

A posteriori valuation rule $\pi_k^{\gamma}(H)$.

Some examples

3

<ロ> (日) (日) (日) (日) (日)

D. Zivoi (ETHZ)

Imperial College 2015

March 6, 2015 20 / 23

< 47 ▶ <

3

Let S be a P-martingale. Since $\Delta S_k = \Delta M_k + \lambda E[(\Delta M_k)^2 | \mathcal{F}_{k-1}]$, we have $\lambda = 0$.

Since

$$0 = \frac{1}{\gamma} \sum_{k=1}^{T} \lambda_k \Delta M_k = \widehat{X}_0 + \sum_{k=1}^{T} \vartheta_k^0 \Delta S_k + L_T \Rightarrow \vartheta^0 = 0, \quad L_T = 0.$$

Moreover, the FS-decomposition coincides with the KW decomposition.

Let S be a P-martingale. Since $\Delta S_k = \Delta M_k + \lambda E[(\Delta M_k)^2 | \mathcal{F}_{k-1}]$, we have $\lambda = 0$.

Since

$$0 = \frac{1}{\gamma} \sum_{k=1}^{T} \lambda_k \Delta M_k = \widehat{X}_0 + \sum_{k=1}^{T} \vartheta_k^0 \Delta S_k + L_T \Rightarrow \vartheta^0 = 0, \quad L_T = 0.$$

Moreover, the FS-decomposition coincides with the KW decomposition.

$$\pi_k^{\gamma}(H) = E[H|\mathcal{F}_k] + rac{\gamma}{2} Var(L_T^H|\mathcal{F}_k)$$

D. Zivoi (ETHZ)

Let S be a P-martingale. Since $\Delta S_k = \Delta M_k + \lambda E[(\Delta M_k)^2 | \mathcal{F}_{k-1}]$, we have $\lambda = 0$.

Since

$$0 = \frac{1}{\gamma} \sum_{k=1}^{T} \lambda_k \Delta M_k = \widehat{X}_0 + \sum_{k=1}^{T} \vartheta_k^0 \Delta S_k + L_T \Rightarrow \vartheta^0 = 0, \quad L_T = 0.$$

Moreover, the FS-decomposition coincides with the KW decomposition.

$$\pi_k^{\gamma}(H) = E[H|\mathcal{F}_k] + rac{\gamma}{2} Var(L_T^H|\mathcal{F}_k)$$

 $\pi^{\gamma}(H)$ fulfills the following recursion (DPP substitute):

$$\begin{cases} \pi^{\gamma}_{T}(H) = H, \\ \pi^{\gamma}_{k}(H) = E[\pi^{\gamma}_{k+1}(H)|\mathcal{F}_{k}] - \frac{\gamma}{2} Var(\Delta L^{H}_{k+1}|\mathcal{F}_{k}), \quad k = T - 1, \dots, 0. \end{cases}$$

Deterministic mean-variance tradeoff (i.i.d. models)

Suppose that the *mean-variance tradeoff process*

$$\sum_{k=1}^{j} \frac{(E[\Delta S_k | \mathcal{F}_{k-1}])^2}{Var(\Delta S_k | \mathcal{F}_{k-1})} = \sum_{k=1}^{j} \lambda_k \Delta A_k$$

is deterministic.

Deterministic mean-variance tradeoff (i.i.d. models)

Suppose that the mean-variance tradeoff process

$$\sum_{k=1}^{j} \frac{(E[\Delta S_k | \mathcal{F}_{k-1}])^2}{Var(\Delta S_k | \mathcal{F}_{k-1})} = \sum_{k=1}^{j} \lambda_k \Delta A_k$$

is deterministic. Then

$$\sum_{k=1}^{T} \lambda_k \Delta S_k = \sum_{k=1}^{T} \lambda_k \Delta M_k + \sum_{k=1}^{T} \lambda_k \Delta A_k$$

and hence $L_T = 0$. Moreover we have $\widehat{P} = \widetilde{P}$ (non trivial). Therefore

$$\pi_k^{\gamma}(H) = \widetilde{\pmb{E}}[H|\mathcal{F}_k] + rac{\gamma}{2} Var(L_T^H|\mathcal{F}_k)$$

 \rightarrow Dynamic financial variance principle.

D. Zivoi (ETHZ)

Conclusion

- Construction of an a posteriori valuation rule $\pi_k^{\gamma}(H)$ at time k from \prod_k^{γ} through an indifference argument.
- **2** Π^{γ} -indifference hedging strategy is the local risk-minimization stratetgy ξ^{H} .
- Solution An explicit scheme for valuation and hedging a general claim H:
 - ▶ Determine the FS-decompositions of H and 1/γ(λ M)_T.
 - (OTC) value at time k is $\pi_k^{\gamma}(H)$ and hedging strategy is the local risk-minimization strategy ξ^H .

Thank you

D. Zivoi (ETHZ)

Imperial College 2015

March 6, 2015 23 / 23

3

イロト イヨト イヨト イヨト